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§ 1. THE object of the present paper is to notice certain forms into which the series for
the primary elliptic functions admit of being thrown, and to discuss the identical rela-
tions to which they give rise. These latter, it will be shown, may be obtained directly
by the aid of Fourier’s theorem, or in a less straightforward manner by ordinary
algebra. :

§ 2. Whenever we have a periodic function of , say Jw, such that yo=y(z+p), it
is well known that we may assume, for all values of «,

Yr=A,+A, cos g::i”-[-A2 cos 4%"3+ &e.
+B, sin i’i+32 sin ‘%"f-;- & ;

and if Yo be even, so that Ya=+y(—«), then B,, B,, &c. all vanish; while if Jz is
uneven, so that Yyo=—Y(—x), A,, A,, &c. vanish. If Yz is such that Yo=—Y(z+p),
then we have
Yr=A, cos 7;—w+A3 cos ?—'F—{— &e.
or
=B, sin 7—;3—|—B3 sin —Z—m—[— &e.,
according as Y& is even or uneven. -
But there is another totally different form in which J& may generally be exhibited,
viz.

Yo=02+40¢ (2 — @) +¢(2+w)+p(r—2p) + p(x+2p) + &e.

=pu— (@ —p)—p(@+p)+0o(—2u) +o(2+2p)— &c.,

according as Y(z—+u)="Vx or =—du.
The sine and cosine cannot be so expressed, but the other primary circular functions
do admit of this form, as, ex. gr., in the formule

or

1 1 1 1 1
cot x_5+w—-7r+w+7r+w— 27r+.z'+ 27u'+ &e.,
1 1 1 1 1
cosec x:E“w—w_.m+w+w—2x +x+ 2% &e.
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(in which, after the first term, the series proceed by pairs of terms, so that for every

1 . 1
term —— there 1s a term )
&X—Nw X +nw

Thus in general (although the sine and cosine are, as just mentioned, exceptions)
we shall have, by equating the different forms of J, identities such as ea. gr. (if
is even)

or+o(r—p)+o(x+p)+ &e.=A,+A, cos 2—:£+A2 cos ?-{— &e.

Also, it will be seen in § 10 that in certain cases even when Y& is not periodic it may
be exhibited in the form ¢a-+¢(x—p)+¢(2+w)+ &c., and we shall obtain identities
in which the two sides of the equation are non-periodic.

§ 3. Before applying these principles to the elliptic functions, it is convenient to
write down at once the following eight formule, which are to be found in the ¢ Funda-
menta Nova’ (pp. 101, 102, &c.), and which are all placed together in DurEeE’s ¢ Theorie
der elliptischen Functionen’ (Leipzig, 1861), pp. 226, 227 :—

sin amu:%{lfgsin gl%-l—l_q_gq?, sin %erg—l— &c.}, N ¢ 8
cos am "I?K{liqc s2K—|—1 g}r{—u—l— &c.}, Coe e e e (2)
A am u:Q—%{lJl—i% cos %—l—lif% cos 211?_'_ &c.},. N &)
tan am u_%,K{t n;'K l—ég_gQ i K+1+q;,,sin 2;{”— &c } N 3]
cosec am u——ﬂ—({cosec 2K—i————g—sm 2K+1 g3 sin 2K+ &ec. } N )
secamu_ok,K{se ”Iu{ —_g— K+l+g: osg%—w &c.},. e (2]
A;mu—_-gka{l‘—lj_chos K+1+24C SQW &e. } Coe e (7)
cot am u_QK{c t;rlu{ liqqg smﬁg l%zsin 2%~ &c.}, N )]
=K’

wherein, of course, g=e X.

7K
In what follows, let r=¢ ¥, and take
=K' 2K
P=K PEKD

so that
g=c¢™*, r=e”’, and p=g"
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k.04 yr

Also let 2=~ K and 2= K” so that ==

§ 4. The process of transformation into the form

prto(e—p)to(e+p)+ &e
may be conveniently exhibited on (2); we have

2Kz . .
cos am —— =cos am u==sec am (ué, £'), which, from (6),

7 2 4r ete? 43 S fede

_QkK’{ez—i-e"'_l—l-r +1+73 9 &C'}

=;’I%{M~——;;—(e +o)(r—r 1 —&e.) + (¢ 47N r°+7~"—&c-)——&c-}
T 1 re® re=? © o2t r2e~*

'——K{ _I_e—z 1 _H.zezz 1472 e-2z+1 +7‘4e2z+1 —|—7‘4€"22 &C}

_m 1 1 1 1 1 ' &
—kK' et e * rez+r"e“z“r“lez+re“z+r262+r”2e‘z+r“2eﬁz+7'2e“2z— C.

e : - + ! —&ec 9
kK’lr;—*_r*; rz_""r_(;—l) _H-I-r (w“) __2+r'($—2) rz+2+r‘(f?+2) } ©)

The process requires that r¢* should be <1, that is, that % should be <2K; but as
both sides of the equation are such that they change sign without being altered in value
when u+42K is written for #, we see that the result obtained is true for all values of «.
Thus we have

) x 1 1 1 1
COS am szzl_CK?{rx_*_r—z_rm-l+r——(x—l)_r.t+l+T—(w+l)+7.x—2+7.~(x—2)+&c-} . . (10)

for all values of z.
If in (10) we take £=0, we have

- =g &
or, writing K and ¥ for K' and %, and therefore ¢ for #,

24K
- :1—1+92+1+q4

— &e.,

which is at once seen to follow from (7), and is given by Jacosl, ‘ Fundamenta Nova,’
p. 103.
It is, of course, easy to deduce (9) directly from the infinite product

,\/ 1 —cos am —tan H ® (1—2¢% cos z+ ¢*) (1 + 2¢2"! cos z -+ ¢*"2)
14 cosamu . (1+2¢* cos &+ ¢*) (1—2¢*' cos &+ ¢**~3) )

for consider

i— 2q2n cos & + qdn h h (1 — 2nez:c) (1 q2ne w)
1+ 21]2" cos &+ q4n7 1C - (1 + q2new (1 +q2"e‘“”)
312
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Taking the logarithm and differentiating, we obtain, after a little reduction,

w0 1 1
K{é?neiz_ q—Qne—ix—l— q—2neiw_ q2’ne—i$}'
Similarly, from the uneven factor we get

b 1 1 .
K 92n—leia:_ q—(2n—l)e—iw+g~(2n—l)eix_ qzn—le—ix s

thus
K T
cos am (K —u) ™

m s 1 1 1
o Cosec T+ e — e + et — gng—ia " gEn—lgle _ =@ Vg—ix

1
- g—(2n—1)ew_qzn—le—ix}'

Replace # by K—u, that is to say # by 4w—, and remembering that ¢*"=q,
e "= —q, we find ‘

T 1 1
sec am w=jgzzqsec £+ 2% émi;—l-. T PE L me s )

Herein write ui for % and %' for %, and we obtain the value on the right-hand side of
(9) for sec am (ui, &), that is, for cos am .

If the other formule in the group (1) to (8) be transformed in the same way, viz. by
use of the identical equations

sin am w= —7 tan (i, k'),
A am w=cosec am (ui + K/, ¥'),

we obtain the following seven formulee :—

. T rr—p—2 rt—l_?l.—(z—l) 7.x+1 __7.—(13+1)
Sin am 2K.T: - QkK/{rr_i_r_z—rz—l +r—(z—1)_—7a+l +7-——(z+1)
7.z~2_7.—(z—2) ,rx+2_7.—(z+2)
+rz—2 + (=2 7a+2+r—(z+2)_ C'}& (11)
x 1 1 1
Aam 2Kx=KI{7,z+T~z+rr—l +T—(z—l)+rz+l +7~—(I+l)+&c'}3 L (]‘2)

T 1 1 1
tan am QKx:FK’{rm-I_r”%—7‘"“*’%)+7'1"%—r”(z‘%)+&c'}’ N (13)

1 P 7‘”+7““$ 7.z—l+r—(z—1) 7.x+1+7.—(z+1)
sin am 2Ka —Q-K_'{r”—r”’”—r’“l—-r—<~"‘1)—rf+1—r—<’”+‘) c }’ (14)
1 T 1 1 1
cos am ZKm:IfK’{W“%—r*(’”ﬂf)_r’”%—r—(’”*é)—rﬂf~%_r—(x—%)-I‘&C-}, .- (15)
1 T | 1 1 1
m=m{m+w+r-—w+w—g+r—<r—%>+&°-}" -+ (1)

1 1 1
cot am 2K$=_%{w—r—x'l"ﬂ-l—r—(x-l)+rx+1—r"<x+l>+&c‘}' N eV
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It must be remarked that in (11) and (14) the number of terms must always be
uneven ; this point will be noticed at greater length further on (§ 10).

§ 5. Writing the hyperbolic sine, cosine, &c. as sinh, cosh, &c., these formule may
also be written in a somewhat different form: thus

cos am y= élczK’{ sech é%,—sech 2—%, (v—2K)— sech 5715{7 (v 2K)+&c.},

sin am u_.%K,{tanh —tanh ;3 2K’ (»—2K)—tanh 2K’ (v+42K)+&e. }

and similarly for the others.

. I do not think it likely that the formule (10) to (17) are new, but I have not
succeeded in finding them anywhere. ScurrLpacH (‘Die Lehre von den elliptischen
Integralen ...’ Berlin, 1864, p. 33) gives the corresponding forms for du, d,u, &c.,
but he does not allude to the similar expressions for the elliptic functions. It would,
however, in any case have been necessary for the explanation of the rest of this paper
to have written down the latter and demonstrated one of them.

§ 6. By equating the values of sin am u, cos am u, &c., as given by (1) to (8) and by
(10) to (17), we obtain a series of identities of an algebraical character (i. . which are
independent of the notation of elliptic functions). Thus from (2) and (10) we have

(remembering the definitions of p, », &c. at the end of § 3)
w ( cosz cos 3z cos bz T
—K{“——P’ LT + &c.} =gzritsech z—sech (z—»)—sech (2 +v)+ &ec.},
cosh™ cosh'= cosh—
2 2 2
viz.
cos x cos 3x cos ba

coshg cosh — ”‘ cosh

—I-&c {sechw——sech (x—-r)—sech = (@w47)+ &e. }

This may be Written (by interchanging # and 2, w and ») in the rather more conve-
nient form

sech £ —sech (2 —w)—sech (2 +w)+sech (2 —2w)+sech (2 +42p) — &ec.

Tz TL 5w ;
o0 CcoS ; COS —— co ——‘u,
:*; { 2 + 37 2+ 5WQ+&C.}. e e e e (18)
cosh — cosh e osh -

In the same way, by comparing (1) and (11), we find

o sin ﬁ sin 3.
tanh #— tanh (#—) — tanh (x'_{_‘w)—|-&c.-;{ E+ §W2+&c.}; .. (19)
sinh — sinh —
2p 2w
and by comparing (3) and (12),
2wz 4nz
- 2cos — 2cos—
sech #-}sech (2 —p) —|—-sech(a:—]—{,o)-|—&c.=;{1—|— £+ "‘ +&e. } (20)

cosh ~- cosh =
[ [
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The comparison of (4) and (13) gives
cosech (x—g) —+cosech (x-{—g) -+ cosech (x-—-%) -+ cosech (x-{—%’) + &ec.

4sin~2—7g 4sin17—r£ }
b

:Z{——tan%”—l—. o7 . i £ 1 &ec.
et +1 et +1

which, on replacing & by #-+1p, becomes

4sin2—m? 4sinf1—75°’f

cosech o 4-cosech (2—u)--cosech (x+(,o)—|—&c.‘:E{cotzr£—— £ ——&c.}. (21
2 poo o
et +1 ek +1

)
/

From (5) and (14) we deduce

7 . 3wz
4sin— 4smm——-

cothm—coth(w——‘w)—coth(a:—l—,w)—{—&c.:z{cosecl;f-l- = AN i a +&c.}. (22)

¥ et —1 et —1
The comparison of (6) and (15) gives

—cosech (x ——%) -}-cosech (.r + %) -+ cosech (w— %) —&ec.

40057‘3 4005@ }
.

k.3 L
—_—-{;{sec W S 5 £ &e.
et +1 et 41

which, on replacing # by 243w, becomes
- 45in”% 4 sin%
cosech & — cosech (27— u)— cosech (x—!—y»)-l—&c.:i{cosec%— = - i e -—&c.}. (23)
et +1 e +1

The comparison of the forms for /3—:%1:—1—4’ (7) and (16), merely gives an equation which,

on replacement of & by #+3w, is identical with that resulting from A am w, viz. (20),
while the forms of cot am %, (8) and (17), lead at once to (21).

In the expressions on the left-hand side of (19) and (22) the number of terms included
must be uneven.

It is proper to remark that the formule for ¢o— @(ax—pw)—@(x+w)+&ec. can be
readily deduced from those for ¢a+@(2—w)+ ¢(2+w)+&c. ; thus (18)is a consequence
of (20) and (23) of (21). For ex. gr. in (20) write 2w for g, and we have

wrL 2nx
: 2cos— 2cos—

sech 2 + sech (#— 2u) + sech (x+2{b)+&c.:i{1+ S A —l-&c.}.
CcoSs g””: ‘COS ;
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Double this result and subtract (20) from it, and we have (18). In a similar way
(23) follows from (21).

The converse proposition is not true, viz. given thevalue of g2 — ¢(2—p) — (2 +w) + &c.,
we cannot deduce the value of ¢2+¢(x—p)+¢(2+w)+ &c.

§ 7. The results admit of being connected directly with FoURIER'S theorem in the
following manner: it is of course well known that every integral of the form

j‘"q)(x) cos nx de=A,
or, let us write, 0
j;“q)(x) Ccos 71:?' dr=A,,
gives rise to a series
qox::i {Ao-l— 2A, cos %-I—ZAzcos 277:,{4-&0. } ;
and that similarly from
{o(@)sin™3" do=B,
there follows

¢>x:+{ sin - +B n%—l-&}

and it will now be shown that if ¢ is an even function of z, and if

j’ "9(x)cos T dr=A,,
then
ox+@(x—pm)+o(x+pm)+o(x—2w)+¢(x+2p)+ &c.-_—% {A0+2A2cos gzrf+2A4cos %@+ &c.}, (24)
and

qo_x—-gb(x—(b)—qo(x-i—@)—l-cp(x—-%»)—l—qo(x—|—2(»)——&c.=§{Alcos ¥+A3cos ?%@-{—&c.} ;. (29)

also, that if ¢z is an uneven function of 2, and if

5 o(a)sin "2 d=B,,
then
<px—|—<p(x——(,o)+qﬁ(x+(»)+&c.:§{B2singﬁﬁ+B4sin4—?+&c.}, .. (26)
and

q)x——cp(x—y,)—@(x—l—@)—l—&c.:i{B sin% B, n———l—&} . .@2n

It issufficient to prove one of these formule ; take (24). Since ¢« is an even function,
¢x+¢(x—w)+o(r+p)+&c. (which call ) is a periodic function with period w, and
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the right-hand side of (24) must be of the form
4
Al +4A, cos g::f—|-Aficos ~:—m+&c.
Now, ¢ being even,

9, = j o(2)eos 22 dy

={.. +§ + +f +. }¢(%)cost~'L-

But
Jvo @(x)cos 2%@ dx:jmq)(g—- @) cos ?_’1;’1’5 dé, on taking a=E&—pw,
and ,
jﬂuq)(m) cos 2—"%?? dz :‘rq)(g +w) cos 2—7;?1% d&, on taking 2=£&+w;
thus

Ommk

2= (95 +(E—w)+HoE+u)+. . - Joos T
:ﬁ) "W(2) cosg%‘f do=A,,.%,

unless m=0, in which case
2A -—A:) . {4
so that (24) is proved. Formula (25) may be elther obtained independently by a similar

treatment of the integral

(2m+1)wa

2A2m+1:jw @(z) cos dz,

or it may be deduced from (24) by writing therein 2w for w (remarking that by this

substitution A,, becomes A,,) and subtracting (24) from the double of the equation so

formed. Similar processes apply to (26) and (27). ‘

The method by which the formule (24) to (27) have been just obtained is the same

as that by which Sir W. Tromson (Quarterly Journal of Mathematics, t.i. p. 316)
deduced the theorem ] i

" — e — g~ | &, _—_-2—{3 {e’ffﬁ Cos 7%—[-0_2% COs §—‘!7:~°P~c«+&c.} . (28)

from the integral

: ® Vr 2

5; e~ cosna de=-"5-¢ +.

It was after reading Sir W. THoMSON’S paper three or four years ago, that I made a
list of all the suitable integrals of the form.

j‘mq}(x) cos nx da
0

that were given in Professor DE Haax's ‘Nouvelles Tables d'Intégrales définies’
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(Leyden, 1867), and deduced therefrom the resulting identities. The only formule so
obtained which appeared of interest were, in fact, those which are given in the present
paper, viz. (18) to (23); but at the time I was not aware of their connexion with the
theory of Elliptic Functions. It was only recently, after obtaining the values of
sinam & &c. in (10) to (17), that I remarked that the resulting identities were the same
as those which I had previously deduced by the aid of Sir W. TromsoN’s principle.

It was shown by CAYLEY at the end of Sir W. THoMSON’s paper that the identity (28)
corresponds to

@ (ui, k)= \/G%)eﬁ Hu+K, #); . . . . . (29)

and it is singular that all the identities that follow from the method of this section thus
appear to correspond either to elliptic or theta-function transformations. Speaking
generally, the only evaluable integrals of the requisite form are derived from

° —a%? —_— V” —Z*; ” --ax _,__,‘_I_A
j‘o e~ cos 2bx dx_%e and j‘,, e cos bx dx_a2+b2
(including as derivations the corresponding sine formulz), of which the former give rise
to theta-function relations, and the latter to elliptic-function relations.

§ 8. The integrals that produce the formule (18) to (23), and the manner in which
the latter are obtained from them, deserve some attention. Thus

cos ne _ PRI
5:) =t dx y cosnx (e~ *—e *+e &c.)dx

5

n9+12 n+3a+7ﬂ+5Q —&e.

3 nw
=3 sech 5>

whereby (18) and (20) follow at once from (25) and (24).

In a similar way we can show that

sin n " erm—1
| e de=f e T =150

but the series obtained from the direct application of this integral would not converge ;
and in order to deduce (21) and (23) from (26) and (27), it is necessary to express the

integral in the form
T 1—. 2
47 e

+ cot 10 =sin d+4sin 204-sin 30+4-&ec.,
L cosec 0=sin 0-}sin 304 sin H0+&ec.

and to make use of the formule

This renders the process not so satisfactory from a logical point of view; but practi-
MDCCCLXXYV. 3y
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cally our knowledge that sin d--sin 204&ec. and sin §-sin 30+ &c. are the FOURIER’S-
theorem equivalents of % cot 14 and & cosec d would be sufficient to leave no doubt of the
accuracy of the formule so obtained.

In regard to the other two integrals required for (19) and (22), viz.

y tanh & sinny dr and f coth & sin nz da,
3 0

it is to be observed that, stated in this form, their values are indeterminate; for the

former
— j; (1_ 2
=j: <1+e%2_ )

both of which involve cos oo. But in point of fact for our purpose the o of the limit
of the integral is not arbitrary, but is to be of the form (m--1)#, the lower limit being

1) sin nx da,

and the latter

sin na dz,

—ma (or if we replace sin 22 by sin 7%, the limits are (m+1)w and —mu). Taking
then m infinite,

(m+1)r . (m+Dym . “sin ne
j tanh z sin nxdz :‘f sinne de—2\ &y dx
0 0 (1]

™ cosma |mtDr n
:L_‘r , _2{7; 2 1 92 nQ—|—4?_I-nQ—|—6Q &c}
cospz |mtDT  p 1 1 1
=] — — —&ec.
! {(—;—>+12 P +2e T {inye 30
™ cosny |m+hr x nw
=| =, ) —%+§cosech 3"

Similarly

& mm
y tanh o sin nx de=\ tanh 2 sin nz da
-_mm

cosnz |™ 1 = nw
:f- | —=5 cosech 5o
no n'2 2

and therefore

(m+1)mr cos mv_‘ (m+Dm Ccos nx
y tanh 2 sin na dx—[ - - ~—|—7r coqech —————
0

—mm 0"

——«zrcosech—, N 6

whether m be even or uneven, if # is uneven; whence the result in (19) follows directly.
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A similar course of procedure shows that

(m4+1)w 2
f coth x sinnx der== coth———r{l—l— }

i e —1
from which (22) may be derived.

In his ¢ Nouvelles Tables, T. 265, Prof. DE HaAN assigns definite values to the inde-
terminate integrals

y tanh & sin nx dx and ‘f coth & sin nz da ;
0 0

and it is noticeable that, if these values be used, they lead to the same results as those
just investigated. The reason is that the integrals in DE HaAN are in effect evaluated
on the assumption that cos co=0; and if in (30) we had, in place of the first two
terms, viz.

1 1.1 1
T, e
written

045-+0-+5,

it is clear that the final result would have been the same.
It may be remarked that the identities (19) and (22) may be somewhat generalized
by means of the integrals

sinh =7 sin 5
"simhaz oo w " 00 2
cosh b S0 M8 d¥=F —————,
0 cosh — + Cos —+
b
*® cosh ax b sinh %75
jo sinh bz S dw:?b o nw peg
cosh T +cos T
while other identities may be derived from
**cosh az P cosh g cos 3
, coshbz COS MY A¥=7p nw ar’
cosh — +cos
b b
an "‘;‘—7{
“sinh az do—T b .
sinh by €08 MV A =05 —— 05
0 cosh " +cos -

in which, of course, @ is to be supposed less than b.
§ 9. The well-known reciprocity of f and ¢ in the formule

f(n)= \/ ) y ¢(x)cosnx dz, f(n)= \/( > .j;wcp(x)sin na da.

leads to a corresponding reciprocity in the formule (24) to (27). Thus from the first
of the integrals we deduce that, ¢ and f being both even functions, if
3u2
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o+ o)+ oo+ +&e. =2 CU£(0) 42 (3 os 22 4 2f () cos 7 &,

then
fx+ﬂw-—p)—|—f(x—|-{x,)—|—&c._Vf”{ (O)-|-2q3< )cos w+2¢(%)cos%§+&c.};
and if
qox-@(m—po)—<p(x+p¢)+&c,:2.ﬁ@ﬂ{f Z} ""‘"_|_f< )c.os ?i:—x-l—&c,},
then
o - 2V (2m) ¥ T 3w 3wz
Jo—fle—p)—fla —I-,w)—i—&c.__~—;4~ {qo(;) cos —|—¢<-;-> cos = —1—&0.}.

Also, from the second integral, ¢ and f being uneven, if

Q-+ @(2— )+ 9(@+ 1) +&e. = -~»2”){f(0”) in 2% f(5F ) sin 4%"“"nt&c-},
then

frtflo—p)Hfwtn) +ee. =" o () sin o () sin T e
and if

<D:c—¢>(x—p»)—¢(x+w)+&c-=%ﬁ§@{f‘(f) in 2 (3 si n——+&c}

then
fe—flae—w)—fx+p)+&e. —QV;QW){@(:—) sin %'l'(P(%") sin %E-]-&c.}.

Applying these formule to the identities (18) to (23), we see that (20) is its own
reciprocal, as also is the case with (18), (22), and (28); while (19) and (23) are reci-
procal to one another. Although Caucny, in his memoir ¢ Sur les Fonctions réciproques”
(Exercices de Mathématiques, seconde année, 1827), has deduced, by means of his cal-
culus of residues, a theorem which is in fact (24), he does not appear to have specially

remarked the reciprocal character of the equations.
The application of the formule presents no difficulty. For example, comparing (18)

with the first of the second pair, we have

¢x=sech , fx-—\/ ( ) sech—

whence the reciprocal formula is

r\/(%){sech 7-rgf-—sechzr@—;ji)--—sechW(J’_'_V')—I—& }

3 3
=2 ‘/ffgw){sech T cos + sech —T cos ﬂ + &c.},

which, on replacing 72 and j7u by x and @ respectwely, commdes with the original
formula (18)

§ 10. On looking at the formulee (18) to (23) it appears that although we have trans-
formations for sech @+ sech (#—p) = sech (z-+p)+&c., cosech &+ cosech (z—p)
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+cosech (z+w)+&c., tanh £—tanh (2 —p)—tanh (24 w)+4&ec., and coth 2 —coth (2 —p)
—coth (2 +w)+ &c., there is none for either

tanh 2+ tanh (#—p)+tanh (24w)+ &e.
or

coth &+ coth (#—w)+coth (z+4u)+&e. ;

it is therefore interesting to inquire what are the corresponding formule in these cases.
If we write (21) in the form

2 7. 2 T,
cosech 2 + cosech (2 —w)--cosech (2 +w) + &e. = %{tanh Z”; sin QTw +tanh —5 sin if—l—&c. },

and reciprocate it by the third pair of formulee of 0 9, we obtain the following result,

tanh x-4-tanh (2 —w)4tanh (2+4p)+&e.
2w 72 . 2wz 27? | 4wz ‘ o
= P{cosech; sin == -+ cosech . sin T-I_&C' }, N 618
which apparently ought to be the first of the two formulae sought; but in point of fact

this equation (as can be shown by actual calculation, see § 16) is not true.
It seems natural to recur to the integral {30), viz.

(m+1)w . cos ny |mtor cosnx | 2 nw
tanh x sin ne dr=| — +| ——— | —=+4mcosech—
n 27

-—mm n 0 n o

from which, since the first two terms of the right-hand member vanish when n is
even, we have

(m+1p . Onwa nn?
j‘ tanh 2 sin —— — — & -+ cosech — ;
o nw 2

—mp

whence ultimately, since 7 —44=sin -+ sin 20+ % sin 30+ &c.,

tanh x--tanh (2 —u)+tanh (24 w)+ &ec.
2 P23 72 . %%z 272 . 4wz |
-F—I-I——[;{cosech L Sin= s -+ cosech o smT-l—&c. e }, .. (32)

but this result is not true either, and for the following reason :—Let

. Vo=02—¢ (r—p)—¢ (v+p) ... £ (x—np) Lo (x+np),
an
xt=02+¢ (t—p)+¢ (¢+p). .. +¢ (x—np)+@ (v+nw)
(n infinite), and suppose @z is an uneven function of # which =1, when 2= .
Then
b ()= —dat o (v—np) £ (e-+(n+1) )

=—\’/$,
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so that Ja is periodic; but
% (@4 1) =x2—p (r—np) + (24 (0 +1) )
=yz+2,
so that ya is not periodic. Therefore we have no right to assume that between the

limits 0 and w of &
tanh # -+ tanh (#—w) + tanh (x+p)+&ec.

can be expressed in the form

A, smf' —I-A sm -I-A sin —-—[—&
the true form being
B, sin — +B sn———l—B l—l—&c.

We may, however, assume that between the limits 0 and Ju of

tanh 24-tanh (z— )+ tanh (24) + &e.=A, sin %’:i”+A2 sin 47’:1’+&c. ;
and then '
E A, =("{tanh o tanh (r—p) + tanh (24 p) +&e.} sin 2 d
4 0 . [ I . ® z

= { YM +5v—w+ygu + &c.} tanh # sin Znma dx
—m o o

@m+1)) onm
:j‘ 2 tanh 2 sin —— dg
0 [1ad

__r N3 cos Qnwx (f‘m"'l)"; ® 9 sin Innx d
_L nm el o €41 ‘u, X

w2

=(—)* ‘)Zw+2 cosech —

We thus find that between the limits 0 and 3w of # (and therefore also between
the limits —Zu and 4w of 2)

tanh #4tanh (z—p)-4tanh (x—l—p,)+&c.:~ %{sin —%?——% sin @—[n&c.}
w2 4wz

+§ —é{cosech ~ gin —p’— +cosech —sin —— +&c }

2 T 72 . 2w 272 L
:?+F{cosech “ sin *;-—I— cosech i sin 74—&0-}, - (33)

the terms on the left-hand side being uneven in number, and such that for every term
tanh (£ —nw) there is also a term tanh (2 +nw).
If we write #+@ for & in this formula (33) we increase the left-hand side by

tanh oo 4-tanh oo, that is by 2, while the right-hand side is increased by f . v, that is
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by 2 also; while if we replace 2 by #—p both sides are diminished by 2; so that (33) is
true universally for all values of , on the understanding that the left-hand side is
tanh o+ {tanh (r—p) + tanh (z4p)} + {tanh (2—2p)+tanh (24 2p)} + &e.,
viz. that after the first term the series is to proceed by pairs of terms; so that for every
term tanh (2 +-nw) there is also a term tanh (2Fnw), and the whole number of terms
included is uneven. Thus for 2=3uw the series is
tanh 3u+ { —tanh Jw-4-tanh $u} 4 { —tanh $p+4-tanh §u} +&ec.,
the value of which is unity ; and not
{tanh fp— tanh Jw} + {tanh $p—tanh $p} 4 &e.,
which is equal to zero.
If we write 243w for #, and suppose the terms arranged in pairs from the begin-
_ning, we find

{tanh (2+2pw)+tanh (2—%p) } 4 { tanh (2 43p)+tanh (2 —5p) } 4+ &e.

2¢ 2 2 . Onp 2n? . Adwz
== __")cosech = sin —~— cosech — sin—+4&ec... . . . . (34)
R o 2 2

as the unity which is introduc;ad on the right-hand side by the change is cancelled by
the unity on the left-hand side, which results from the supposition that the number of

terms is even. _
The last equation is, in fact, the relation

iz (it K) =5+ Zn+KLE) . . . . . .. . (35)

(Fundamenta Nova, p. 165, and Durker, § 69); for

2r( q . ¢ . e
Z (u):—K{l — o5 2:1:—{——1—-_—(‘—73 sin 4&:—{—1_96 sin 6w—{—&c.}> ;

so that (35) becomes

2mi q . . @ . Y TP
f{ —T—g s 2o+ s dwi—1 —gFsn b6ai+4&e.

U 2x r?

r . .
:QKK"!'K'{_TZTQ sin 22+ sin 4z—&e. },

of which the left-hand side

I

21 (=) g+ ¢+ ¢+ &o)— (¢ —e )@+ ¢+ 9"+ &e. )+ &e. }

_ o qe2:c qe—~21 gSe2x 938—2:5 ]
- K{l +qe® " 14ge ™ + 1+¢% 1+ q3e“‘~'1+ &e.

}

5 (lmger 1—qe  1—ger 1—ge )
_-’Q_K{‘[ + qeu— 1+ 93—22 1 _|_98€22_ 1 +q?’e"2’”+&c‘ 5
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and the identity becomes
tanh (#—3p)=+tanh (2+43p)+tanh (#—3p)+tanh (2 4+3p) + &e.

2% 2% (sin2z sin4z
m {smhv sinh 2v+&c'}’

Tk
2
z being 7—;? and » being % We see from this investigation also that the left-hand side

must consist of an even number of pairs of terms.
As (85) is obtained by differentiating logarithmically the formula

0 (ui+K)=4/ (%) A (u K, ),

it follows that (34) is a form of the identity that results from differentiating loga-
rithmically

g-l’—|—e‘<x—")2+e“‘“")’+&c.—L{1—|—26 # COS ——-|— 2e” = cosM-|—& }

The formula corresponding to (33) for the hyperbolic cotangent can be shown, by a
process similar to that by which (33) was itself established, to be

4sing7f£ 451[14_7’@

P +&c.}, (36)

er —1 er —1

71'.%'
®

coth x4 coth (¢ —p)+coth (z-4p) + &ec. ———-|- {

which holds good universally, on the same understanding, with regard to the number
and order of the terms, as that which was found requisite for the truth of (33).

§ 11. T now proceed to show how the identities which have been obtained in the pre-
ceding sections by elliptic functions, or by Fourier’s theorem, can be deduced from the
ordinary formule for the cotangent and cosecant, viz.

1
cota:_—-l— +-Z”+7r x_2w+x+2w+&c, N 1)
11 1 1 1
cosecx:;—x_w—x+w+x_2w+$+QT——&C., N €19

by elementary algebra and trigonometry.
Thus to prove (18) we have

1 1 1 &
2+ ai .z*+ai—7r~x+ai+7r+ G

cosec (z+-ai)=

1 1 1
etai x—ai—7 x—ai+w

cosec (r—ai)= +&e.;

whence, by subtraction,

a a
2’+a* (w—7)+a (w+7r)9+a

s+ &c. = 1 cosec (x4 ai)—cosec (r—ai
)t
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Now
2i 23 e
COSEC U=y~ —u= w7
=—2i¢“ (14 +e™+&c.);
whence

1 , : - , ,
— 51 cosec (x+at)—cosec (x—ai) [ =€~ 46>~ ¥ 4 &e.

+e-—zi—a+e—3m‘~3a+e~5n’-—-5a+&c.
=2{e""cos x+e¢ * cos 3x+&ec. }

and, on replacing « and a by 7% and %a, we obtain the formula

a a aQ a a

CIIpC CRRp 7+ 3t ———&e.
#*+a* (@—p)+a®  (@+p)+e ' (@2 +d T (@ +2u)+a
o [/ _™@ wr _3ma 3rx
=—(eé rcos —+¢ #cos—+&c.). . . . . . (39
#( wt Wt ) (39)
Now from (38)
1 1 1 1
——secx—mwéw-—w_%w—x+%w+x“%ﬂ+&c.
T 37 5w
=G e e e 8
whence, writing x¢ for «,
k T 3
sech x= P F G () 2+ Q_Hﬂ —&c.,

and
w + 3 5w &
=G @ T e G

37 LY
QTR e e S e e e e R R

— sech (x—p)=— @

— sech (v4p)=

- 3 57
+sech (1—2p)= g e (z—2/»)2+(%7r)2+(«"f 2yt (g~

Adding these expressions together in columns, and transforming each column by

(39), we find
sech & —sech (#—p)—sech (2+p)+-sech (2—2u)+sech (2+2p) — &e.

w2 3?2 5m2

dr [ Ty 3 iy 4
=—\e 2 cos —-+¢ % cos ~——|—e P cos——+&c.)
[ ( I3 2 [

47[’ m* !)'rrz 15-rr2
M(e s cos——+e En cos——-l—e £ cos—~-|—& )

4 sm? Ty 1572 3w 2571-2
—I—?(e 2 Ccos —-]—e I cos -——{-e +&c >

. . . . . . . . . . . . DY

MDCCCLXXV. 3x
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which, after summation of the columns,

o2 32 57r2
4 [ e T e 37r.2:‘

=~<~ 72 CO8 — 455 CO eyt “o €O S*“a-l-&c)
BF\lgew F aqew P 1qew

72 372 3mrx 572 Sma
_—[:(sech % cos — —|—sech 2 COS T—I—sech 9. CO8 —~+&c )
which is the identity (18), that was in { 6 deduced from the formula

cos am u==sec am (ui, k'),
and in § 8 from the integral

»
w nn
y sech x cos nx dw:~2— sech >
0

§ 12. The other identities, (19) to (23), admit of being demonstrated in exactly the
same way. The formule of transformation, similar to (39), that are required are

x &X— r+w e 3ra

2w . 3wz
mg—(;:';)glzg—m—k&c =% (6 ® §in— +6 L sm-—/;—-{-&c.),

2wa

, 2y | A4 4nz .
z +aQ+(a;' ,u) +a2+(w+,u) ”+&C - ( |22 2o COS?’T—F&C')’

.Z'—l-‘u, 2ra Qwa 4ma
x9+a9+(m )+a2+‘(x AL 2tT&e.= (6 # 31117-{—6 2 sm——i—&c)

the first resulting from cosec (x4-az)+cosec (x—ai), and the other two from cot (x+a?)
Fcot (r—ai). The following expressions, which are analogous to that used for sech «
in the last section, are also needed :—

2z
tanh o= e dw)g.{_ )2+

P +(g7r 2+&c

Qx 2x 2

1
coth a?——~+.z,2+,,2+x9+ (2m)? e (37f)2+&c ’

2x 2x 2@
.Z'9+7r2+.1;’ 2+ (2m)? $2+(37r)2+&c"

1
cosech r=-—
@€

all of which follow from (37) and (38) at once in the same way as that by which the
formula for sech x was obtained.

Only one point calls for notice in these demonstrations, viz. in the proof of (20) we
find
sech x+sech (z—w)+sech (x4p) +&ec.

2w . 2w a2 dnx
:;‘(14—2@ * COS ~:—+26 # COS T—{-&c.)

2 i 2nz o dnx
——W(l—l—?;e ~ COS ~W——|—23 & COS —:——l—&c.)

l\’)

w

101r7
—{:(1+2e 2 cos%+2e & cos *——i—& )

D
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and in order to obtain the correct result we must replace the indeterminate series,
1—-14+1—14+1—&c., by 3. Cases in which the method gives results absolutely erro-
neous will be noticed in § 16.

It will have been seen that the process of § 11 consists in replacing each term
of the original series by n terms (n infinite), and therefore the original expression itself
by n* terms. Each series of n terms formed by adding the vertical columns is trans-
formed into another series of # terms, so that we thus replace the first scheme of »* terms
by a second scheme of #? terms, which latter system, being such that the columns admit
of being summed as ordinary geometrical progressions, gives the second side of the
identity to be proved.

0 13. A question that naturally arises is to inquire what are the results which we
should obtain if, instead of using (39) and the similar formule for the conversion of
one series into another, we were to replace at once these series by their finite summa-
tions, ¢. e. instead of (39) to take

a a
P4+d (z—p)+a® (w+f»

T at&e=g5— {cosec (x—ai)—cosec — (a"+az)}

wai
2 cos — sm —

T [ [

T 2ui wal

o smﬂ——+81 2
‘lL

TE ., T
cos — sinh —
[ [

w
T sin? W—x+ sinh? 7%
We thus find
sech z—sech (x—w)—sech (z-+p)+ &e.
- . sinh g; sinh ?’21:
=7;cos7;{ . — 32—1-&0.}, L. (40)

sin2 7% +sinh?2  sin? e +sinh2 2%
2u |73 2
while the left-hand side also

3ra

2w 72 L k
_;(sech%cos;+sech—cos———+& ) e e o (4D

from (18). Although (40) is the identity which we have absolutely proved, we may
regard the fresh identity as being that which follows from (40) and (41), viz. (writing

2
for the moment x in place of 7—:?, and g in place of %)

cos & cos 32 (  sinhlp sinh 3p -
cosh 3 +cosh W +&c.=cos x{sin2 x+sinh? lu ™ sin® @ +sinh® $u +&e. (42)

This result follows immediately -from another form of the series for the cosine
3x2
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amplitude; for on p. 113 of his ¢ Lehre von den elliptischen Integralen und den Theta-
Functionen’ (Berlin, 1864), ScHELLBACH finds

(=) gt (1—g**) a
80 6,0 gr=4 cos & 3, g cosgmi gyt v (43)
We easily see that .
2f/K 2Kz g
do 6,0 gx_—cqs am-—-—4{l+gcosw+l+g3 cos Sm—l—&c} oo (49)

and the comparison of (43) and (44) at once gives (42), since sin® --sinh? e=1 (cosh 2a
—cos 22). The result (43) is also given in the ¢ Fundamenta Nova,” p. 102.

It thus appears that by absolutely summing, instead of transforming, in the process
of § 11 we obtain the series of formule which ScuELLBACH has given on pp. 118, 114 of
his treatise, so that all the formule and identities which arise from the transforma-
tions of the elliptic functions are algebraically exhibited by the method of § 11. It is
unnecessary to write down the series of identities analogous to (42) for the other func-
tions, as they can be easily derived as above from the values in ScHELLBACH. It may be
remarked that (40) is a transformation of sec am (ut, k')=cos am u, but (42) is merely a
transformation of cosam w=cosam u. If, therefore, we perform the process of § 11 in
reverse order (¢. e. starting with the trigonometrical side of the identity to be proved,
sum the rows instead of transforming them) we obtain (42) at once.

It appears at first sight as if ScurLLBACH'S formula

2k K 2Kz (=) g (1+¢*)
_r sec am*‘— sec -T+4: COS-TEI l+2ngOa 2x+q48

(45)

gave rise to another formula for the cosine amplitude, by writing 7 for # and changing
the modulus from % to %' ; but this, in fact, merely gives an expression already obtained ;
for the right-hand side of (45), on writing «¢ for # and ¢ for ¢, becomes

—)? cosh sp

sech 244 cosh 2 27 cosh 22 + cosh 2sp.

cosh (#—sp) + cosh (2 -+ su)
cosh 2 —sp) cosh (2 + sw)

=sech 4 3;'(— )*{sech (¢ —sw)+sech (x4 su)}.

which =sech 2+27(— )

Formulx such as (45) are the nearest approach I have met with to those numbered
(10) to (17) and the other expressions at the end of § 5; but (besides that an imaginary
transformation is required to reduce them to these forms) they do not put in evidence
the periodicity of the functions.

§ 14. It is perhaps desirable to place side by side, for convenience of comparison, all
the different forms into which one of the functions, the cosine amplitude, has now been
thrown. Writing, as before,

wU K S _
T=3K> Z—QKH g=e X =¢*, r=e¢ ¥ =¢’
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_2=( q

cos am u_kK{1+qcosw+l+qscos 3w—|—1+ 5cos5.7c+&c}
o 7 (1—q) g% 1—¢°)
_IcKcosx{l—2qc032w+g 1— 2g?o—s2x+q6+&c’

T 1 1
= p z —I—&C}
kKl{rar+r ™ iy ( ) +‘+r‘(¥+1)

=§ka,{ sech z—sech (z—»)—sech (z4v)+&ec.}

x coshy cosh 2
= 2kK'{SGCh z—4cosh 2 <cosh 2z +cosh 2v~ cosh 22+ cosh 4v+&c’) }

Iﬁ{sechz 14:_,« coshz+7773 +r3 cosh 82— &c. }

while #, z, , » being any four quantities subject to the relations
wL 7w
wy=m>, zzz(whence x=7>,
the identities are :—

sech x—sech (r—p)—sech (¢ 4-p)+sech (—2p)+sech (¢4 2u) —&e.

_ cosh cosh 2u
=sechz—4 cosh x{cosh 2z + cosh 2w~ cosh 2z + cosh 4p. +&e.

4 cosha 4 cosh 3z
e+ 1 + e 41

=gsechz— —&e.

2r( coshz cosh3z  cosh5z
- ?{ cosh 4y +Cosh By +cosh Sy +&e }

2% sinh v sinh $v
= ¢08 z{sin"zz +sinh?}y ™ sin®z +sinh?y +&e.p.
Another form will also be given in the next section. It is scarcely necessary to
observe that corresponding formulee and identities exist for sin am %, A am , cosec am u,

sinam »% &
Aamu’

§16. The identities (18) to (23) can also be proved by trigonometry in another
distinct manner, by starting from the trigonometrical sides of the equations. Thus,
for (18), from the formula

w 10 1 . 3 5
4 SCCh 27#3——124_‘3‘2 32+ﬁz+52+62“'&c‘7
o ny .
we have (writing z for .. for brevity)
= 2 2 3
z sech ;_r_ cosz:% t;osz > cos z +55 cos z — &e.
# S “ +18 “ +1°
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72 2(cos 3z 3 cos3 5 cos 3
y sech 30 COS 3z_~‘;— ( 3 z + Z—&c.\

2 3 52 2

w 572 2 [ cos5h 3cos5z  5cosbz
Zsech—zf—cos5z:5—:§ - ‘ 3% +32 Z z —-&c.}
s Q %.2 /}
whence
et
’L
8w { cosz cos 3z cos 5z
=F{ /lz2 ‘ucz +&C. L
| 2+12 ;Q'[‘SQ '7”‘_‘@‘*'52
8w ! cosz 3cos3z , 3coshz
_?j 32 39,2 +59H« +&e.
i ——+ 12 =5 432 +52
l 7r T

+

L

9 sinh ({p—2) sinh3 (dp—2)  sinh5(ip—2) &
coshix =~ coship coshipu 5O

_, 2coshz _ar 2cosh3x
:2{(6 —'1—+‘eT>-——-<e sz Z gy )+&c.}>

2 4 coshz 4cosh3x

Teiter lqer T lyew —&e,

which, as shown in § 4,

=sech £ —sech(z—p)—sech (¢4 p)+&ec.

We thus in the course of the proof obtain another form for sech 2 —sech(z—w)
—sech (¢+4p)+&ec., viz.

sinh (3 —2) sinh3(ip—2) | sinh 5 (lp—2) .
{ coship = coshu + cosh 5 —&e.ps oo (46)

whence, in addition to the forms for cos am % in § 14, we have

Ccos am

w (sinh(3v—z) sinh3(dv—=z
:/cK’{ cos(h v ) cos(hz%v )+&C'}'

This method of proof is not so interesting as that of § 11, both because the formula
required cannot be obtained in so elementary a manner, and also because the identities
(18) to (23) are not so directly verified, as their right-hand members are shown to be
equal to expressions such as (46), which themselves need some transformation before
they assume the desired forms. The formula

sinh (1Bx —pBx)

cos & cos 3x

T
12+Bﬁ+de+ﬁ2+& 4‘5 cosh 1pr °
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which was required in the verification, is best obtained by deducing it from the well-
known theorem

cosz  cos2x cos3x # cosh (Br—Bx) 1

12+BQ+22+BZ+32+52+& =28 smbpr 2B - - - (47)

from which, by writing 33 for 8 and 2z for #, dividing the equation so obtained by 4,
and subtracting it from (47), we find

cosz | cos3z 7 (cosh (Br—pBx) cosh (37— fz)
12+62+5Q+52+&c —28 { sinh B}“_% sinhipr }
__ @ {cosh (Br—Bx) —cosh ({7 —Bx)cosh { A=
28 ‘{ sinh Bx }

#x  sinh({fr—Bz)

= g’ cosh 1=
It is to be noticed that (46) is only true if « lies between 0 and w. This may be
regarded as a consequence of the fact that (47) only holds good when a is positive
and less than 27 ; but the necessity for the condition is also evident from the process of
verification by ordinary algebra. Thus the expression in (46)

e st bz 2 coshz 2 cosh 3z
_—_-2{(3 —e e — Ther + i —&c.}

¢
=1 2@ +e7) (e —e et —&e )+ 2( e ) (e — e M e — L L) — &

2 2et—1 27t
:ez+ e-—z— 1 +82(r——,;,) - 1 + e.’(r+;¢)+&(’

=sech £ —sech (2 —w)—sech (x4 p)+ &c.,

wherein we see that to justify the summations of ¢~*—e¢ *+&c, and ¢ *—e**# 4 &e.
as ordinary geometrical progressions we must suppose & to be positive and less than w.'
Also since sech x—sech (r—p)—sech(z+w)+&ec. is periodic, while the expression in
(46) is not so, we see that the equality will not hold good beyond these limits.

I have worked out the corresponding proofs of the other five identities (19) to (23)
in the same way, but none of them call for any special remark. The process is not in
all cases exactly similar, as, ex. gr., in deducing (19) from '

x 1 28 28
sinh Bz — B~ B+ 1+ﬂ2+22——&c"

sinz  3sin3x A 5sinbz = cosh( B —Ba)
ﬁZ 12+ 62 39 + 52 52 +& cosh 257‘. L)
we find
sinz sin3z
m—{y-}-smhﬁy—l—&c = (sm z+%sin 3z+ % sin 624 &ec.)

w cosh(w—2x) cosh 2(u—22) )
*w{ coshp —  cosh2u +&e.p
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whence, since the first series on the right hand side=2Z, when a is positive and less
than w,

sin z sin3z _p, cosh (p—22) cosh 2 (u—22)
sinh } +s1nh%v+&c‘_2—7r{1_2 coshpu +2 cosh2p —&e.

and

h (u—2 h2(u—2
tanh 2 —tanh (v —w)—tanh (¢ +p)+&e.=1—-2 cosc(f:h‘k x)+2 co8 cos(}(:Qy. x)—&c.

The other transformations to which the method of this section leads are

cotho— coth(z—p)— coth(e+p)+ &o. =148 E=20) 4 g cosh2(e=22) | g

coshp cosh 2u
h(u— h3 (ly—
cosech #— cosech (z—p)—cosech (v +p)+&e.= 2 Cosc Oiﬁ;’b 2) +222 ci(}f!: 2 +&e.,

cosech £+ cosech (v—w)+cosech(a+u)+&e.= 2 sinh (b —2) +2 sinh 3 (4 —a) +&e.,

1 ] 3
sinh sinh $p

cosh (jp—z) cosh3(Fu—a)
- —9 -
sinh g < sinhdp +&e.,

secha+ sech(z—p)+ sech(e+p)+&ec.= 2

which can be readily verified by ordinary algebra in the manner explained above. In
all these identities 2 must be positive and less than w.
§ 16. It onlyremains to apply the methods of §§ 11 and 15 to the identities ( 33 and

(36), which differ from the others by relating to non-periodic functions. Employing
the method of § 11, we have

2 2z

tanh x:m +m +,Z'Q ) +&Ca

_ 2w 2(o—p) 2(e—p)
tonh (@ =)=t o T e e e G T O
2(z+p) 2 (2 + ) 2 (x+w)

tanh(x+’b)—(m+;b) 1 (Ln 2+(x+p-) (77‘.)2‘1‘(‘”4_“) EyE )2"‘&09

. ,

whence

4 e~
== —5, Sin 2z—|— pe= sin 4z 4+ &e.
w \1—e 1—
w

2% (sin2z = sin4z
=—;Z<mhv+smh°v+&> o (48)
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whereas the true equation is

tanh & 4 tanh (r—p)+tanh (2 + p)+&e. _2—”’”—1—2”(81“ Qz+:l;nh4;+& > . (49)

sinh v

It is well known that if an infinite system of series be summed by rows and by
columns, the results need not necessarily be the same; but the above is a striking
instance of such a disagreement. 'We should be prepared for some ambiguity from the
observation that although the value of the left-hand side is liable to a change of a unit
according as the number of terms retained is even or uneven, yet in the process of
transformation no condition whatever with regard to the number of terms in the columns
1s, or can be, imposed; but we should scarcely expect to obtain an absolutely erroneous
result by an apparently definite process.

If the same method be applied to the hyperbolic cotangent, we have

1 2x
coth g=—+— Mﬁ—wgﬂg,,) 2 +&e.,

and finally

sin2z sin4z

coth 2-+ coth (¢ )+ coth (2-+s) 4 &e. = = coth - (e2y_1+ 1+&c> . (50)

which is also erroneous, the term ; being omitted on the right-hand side.

The method of 015, however, yields correct results, for

2”— 2!
2w . 2 (m “r .
—cosechy sin2z==<{-— -3 T —&c.bsin2z
i w v . , P s

1 +—“ 2 +;r_g

2.2,
or . 2(=w " ‘w .
= cosech 2y sin 42==J—— =+ —&e. ; sin 4z
" | 2v 2% 2%?2 ’

12+__ 22+_2_

whence

%’5 (cosech v sin 224 cosech 2» sin 4z+&c.)

2/ . 2sin 2z . 2sin 2z
== (sm 22— 2 +252 5 —&c.)

7*‘3;4‘19 +19
2 [(sind4z 4sin4z 4sindz
P2 (e tine iz )
- —+ 22 +22
3
+

sinh® (r—22)  sinh 2¥ (r—22)

LS KA d i - &ec
= {2 g sinh g +7 sinh 2u }
MDCCCLXXY. 3y
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(by use of the formula sin 443 sin 20+4% sin 360+ &e.=17r—16)

2z 2smh(p.—2x)+zamh2;,c 2x)

=1- [ sinh g sinh 2u

—&ec.;

and therefore

2 2w (sm 2z  sindz ) 1—9 sinh (u —22)

2 sinh 2 (u—22)
7 sinhy +Sinh 2y sinh 2y +&e sinhy + sinh 2p

—&e

_3—2-‘5 3 — 3—42: )

=1-20 20 —&o 42t — S e

=1 —Meﬂi T+ 2 {(e"—e ) (e e *+&c.)— (e —e ) e+ e +&c.)+- &c. }

e2(z—n) e—2(z+n)
—tanh #4-2 {1 T +e_2(z+”)+&c.}
=tanh #-tanh (¢ —pw)-+tanh (2 +p)+ &c,,

which is the true formula.
In the same way, since

v 14

o g(x % o
;cothvsin2z:;{;—|— St Q—I-&c }sin 22,

19+;§ 22+—9

we find that

sinh 2 (u— 22)

sinh (x— 2z) +2 . -I-&C.

sinh p

3;: (coth v sin 224-coth 2vsin 424 &e.)= _25+1 +9

= —%x +coth 4 coth (¢ —p)+coth (z +p) +&e.,

which is correct, and agrees with (36).
It is of course easy to assure one’s self that (48) cannot be true; for, taking w== for
simplicity, and differentiating with regard to z or z,

4 4 4 cos 22 2 cosdxr = 3cos bz
(e:: + 8—1)2 + (e:c-—w +e~—(r—1r) Q+ (ez+1r+ e= (I+1r))2+&c _ 8 {eﬂ_e—1r+e21r__e-lvr+ed1r__e—-31r+& }

and it is evident that if we take #>%7 and <%= we should have a positive quantity
equated to a negative quantity. :
I thought it of interest to actually verify numerically the truth of the formule (33)
and (36) in one or two cases. Working with seven-figure logarithms, and taking uw=2,
=1, I found that each side of (33) was =0'545188, and for p=2, =1 that each side
was =0282281; while for =%, p=2 each side of (36) was =2+ 07112 and for =%,
w=2 each side was =4:04247; placing beyond doubt the correctness of (33) and (36).
1t is a characteristic property of the identities noticed in this paper that in all cases
the series on both sides are convergent whatever may be the values of # and w. For
the actual calculation of the elliptic functions the formule (10) to (17) would be
preferable to (1) to (8) if the angle of the modulus was very near to 90° so that g was
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nearly equal to unity; but as probably the theta functions (or their transformations as
in (28)) would always afford the best means of actually calculating the elliptic functions,
I have not investigated whether (10) to (17) would present any advantages over the for-
mulae which result directly from the change of modulus from % to %, as ex. gr. the formula
at the beginning of § 4, viz.

x 1 r
_ (7 —z)
cos amu_kK,{e,,_H_z 1_H(e +e ")+

r8
1 +73(63’+e‘3‘)——&c.}.

§ 17. There are two well-marked classes of identities that are derived from the theory

of elliptic functions, viz. pure algebraical identities, in which only one single letter is
involved, as ex. gr. ‘

(1—2¢+2¢' — &e.) + (23 + 2¢°+&e. ) =(1+2g + 2¢* + &e. )Y,
and what may for the sake of distinction be called transcendental identities, viz. in which
2
a function of w is equated to a function of -Z— To this latter class belong the chief

identities discussed in this memoir; and if special values be assigned to & such that the
left-hand member of the equation is of the same function of w that the right-hand

2
member is of 3:;, or, in other words, if the identity is of the form ¢(w)=¢(v), where =1,

such a result is usually very interesting. The best known identity of this class is

4 1 4 1
»\/logE(%—l—g-}—g“-l—q"—l—&c.):\/log;(%+r+r‘+r9+&c.); . . (81)

but there is another elegant formula of the same kind to which ABEL has drawn
attention ((Euvres, t. i. p. 307), viz.

1 o 1
e A+l +¢>)(1+4¢) ... =;ﬁ(1 +r)(A4r)A+7) .., o . o (92)
the relation between ¢ and r being of course
log g . logr=a"

It seems probable that all the transcendental formulee of this latter class can be
deduced from the trigonometrical identities in § 11 and at the beginning of § 12 by
elementary methods, without the introduction of elliptic-function formule; and it is of
some interest to verify (52) in this way.

Starting from the formula (23), which may be written

: sinz , sin 32 m( 1 1 1
1 Smz —
— g cosec ¥+ i +1 T 83#+&c. =—2a {e’ P e Py e = 1%} -+ &e. },

we have, on differentiation with regard to z,

1 gin? :c+ 1 +eﬁ‘+ 14e% +&C~ =§;,.‘z (ez__e—z)e"' (ez—v__e—(z—y))e“ (ez+v_e—(z+v))9
32

cosx cosw  3cos3z %2 { e+ ee e~v e~V ety 4 g—(et) }
C
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Put 2=0, and
cos 2 1—1a? 1 !
1 — 2 —_
4 sin?g =i 2*(1—fa?) ™ 4a° (I—32*+42%)
=1 1
_4,2;'2 24
while
72 efde? 222 7222
O,,; (ez—-e‘z)2 422 (1+ 2 —‘é_ —'?}_ —F'Q_>
1 w2
pycl Ty w2
so that
1 3 7‘.‘2 7,2 ev+tev e2v+ e~
L I —_—1 T
—24+1+€"’+1+€3P’+&C‘—24F:2 P‘Q{(ev_e-—v) (e2v_e—2v)2+&c }

= Z’;—% e ™) (142674 3¢~ 44" +&e.)

— (e 4e") 14 2¢7" + 3¢~ 4 4e7'* 4 &c.)
+ &ec. f

2 2 -y —3v —5p
1T 3e 5e
— 24 F"z 2{1 +e V+1+e—3v+1+e—5v+&c‘

72 7? 1 3
="2"1‘4?;2—';é{ f-i-*"“a”iz’-l-&c-};
14er 1+4et

whence, on integration with regard to w,

——«A—-log(1+e “)—log(14-e7*)—&e.=—; ——log(1+4 e~ ﬂ) —log(14¢~ »~) ~&ec.
-+ const.,
viz.

ot (1o ) (1po-) ... =C. i (14o w)(14e5)..

and C=1, as is seen by putting p==; so that (52) is established.
‘The other identity (51), or rather the generalization of it,

o

i W G WP CUBL Y ___‘/_{14_23 ¥ Ccos M—{-Ze I cos» +& } (50)

(which is much more difficult to prove by elementary methods than any of the identities
discussed in this paper), I deduced by algebraical processes from the equation in § 12,

viz. from

me g s 4
P%‘Zifi'(? l; ag—i—(“_p) —pt&e= {1-{—2@ ® COS -:-*w—l-Ze ® COS *:?”+ &c.}, (54)
in the Philosophical Magazine for June 1874 (ser. 4, vol. xlvii. p. 437 e seq.); but it
perhaps is worth while to note here what is the most natural way of obtaining it from



MR. J. W. L. GLAISHER ON THE THEORY OF ELLIPTIC FUNCTIONS. 017

(54), viz. by help of the theorems

]Ve_”g‘g“% - 1 -———VW{ﬁ (55)
5 = s e s v e v 4 e a
L 4 +aJa:0 2n !
dz
r ""Q‘Ez —az — ,—n22t 56
Le Ll Y e (310}

&
whence, operating on (54) with ¢™™ %, and making a=0, we have at once
‘/ (z—p)? (Jc+;u)2 4n21r’ Iﬁn'lar“ 4np
o {e wgT wm Lo W L&, }——{1-{- w cos —~—|—26 ¥ cos ‘7+&c.},

which is (583) if we take n=4.
Of the two lemmas (55) and (56) the truth of the second is seen at once, for

e B a2 1 d*
R (1——7@2%5—}-"{—5 nt %;,—&c.)e“"

(1 n'x —i——-nx—-&c)

— p—n22? —ar .
=¢e s

and (55) is easily established, since @ being put =0 after the performance of the
differentiations,

—n? ﬁ, a —n? iiz., ” —au ? —n2u?
e "W = " d| g~ cosaudu=\ e " cosaudu
z°4a 0
\/x z
—_——. e Tan?
2n°

But the investigation is not elementary; and if we assume a knowledge of the integral

’ —a?z? )‘/ b:
e~ cos 2bx de= 226
0

we may as well apply it directly to prove (53) by Fourier’s theorem as explained in § 7,
or employ it as ScHELLBACH has done (‘Die Lehre von den elliptischen Integralen &c.,’
1864, p. 30). It does not seem to be easy to establish (85) without the aid of an integral ;
for, expanding in ascending powers of #, we have to show that when ¢=0,

2

—niﬂ—-z A .7}4 ‘/7'
¢ d<5_53+¢75" ) 2n<] 4n?+32n4 &C>

and, taking the first term only, although we see at once that

IR R 2
e At —=¢g i ""‘du-—- ‘”’“du=—~

a

yet a 2 4
2% 1 1 1.2.2° 1.2.3.4n
e da’ .E_E— 3 + pe —&C-,

a

which is divergent, and cannot apparently by any simple method be so transformed that
its value when @=0 may be evident, without the intervention of an integral. Thus the

method depending upon (65), though more direct, is not so elementary as that described
in the Philosophical Magazine.
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It is curious that all the formule of the form
o+ p(r—w)+ @(x+w)+ &c.=series of sines or cosines

which can be obtained by definite integrals, and which pbssess any interest, should be
in reality elliptic-function identities. Of course every result that can be derived from
these identities by differentiation, by multiplication by a factor and integration, &c.,
can as a rule be obtained directly from an integral, which integral itself would arise
from a similar treatment of the original integral. This is true of the identities in the
Philosophical Magazine, ser. 4, vol. xlii. pp. 422 et seq. (December 1871); and, for
example, such an integral as

j:e-l cos 2bx dx—_—%geaz{e"?‘“bel‘fc(a—b)—l—e%bel'fc (a+0)} . . . (57)

a?+4 22

(where erfc x:f ¢ *dz) would give rise to identities which, however, could be deduced

from (28) and (63) by a similar process to that by which (57) can be derived from

f ¢~ cos 20z dor= 2/‘.21' e,
[]



